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5.1 Torsional Deformation of a Circular
| Shaft

= TJorqueis a moment that tends to twist a member about its
longitudinal axis.

= Its effect is of primary concern in the design of drive shafts
used in vehicles and machinery.
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= Twisting causes the circles to remain circles , and each longitudinal grid
line deforms into a helix that intersects the circles at equal angles.

= Also, the cross sections at the ends of the shaft will remain f/at, and radial
lines remain straight during the deformation.

= \We can assume that if the angle of twist is srmall, the /length of the shaft
and its radius will remyh unchanged.

< Circles remain
circular

\\___ Longitudinal
lines become
twisted
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Radial lines
remain straight

Before deformation
(a) After deformation

1/23/2017 (b)




(Vg
(Vp]
das
@)
®)
c
@)
(&)
D
)
K%
(q)
—
(«b}
')
=
(T
@)
-
)
(@)
=
(«D)
| —
e
)

TNDCINNI
I IV N

C
JI\JD

\ 5.2 The Torsion Formula |

When an external torque is applied to a shaft, it creates a corresponding
Internal torque within the shaft.

In this section, we will develop an equation that relates this internal torque to
the shear stress distribution on the cross section of a circular shaft or tube.

If the material is linear-elastic, then Hooke’s law applies, T = G, and
leads to a corresponding /inear variation in shear stress along any radial
line on the cross section.

T will vary from zero at the shaft’s longitudinal axis to a maximum value,
Tmax » &t 1ts outer surface.
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This variation is shown in Fig. 5-5 on the front faces of a selected number of

elements, located at an intermediate radial position p and at the outer radius
C.
Due to the proportionality of triangles, we can write

Shear stress varies
linearly along each radial
A_Iine of the Cross secti'on.

Fig. 5-5
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Specifically, each element of area dA, located at p, i1s subjected to a
force of dF = 1 dA. The torque produced by this force is dT = p(7 dA).
We therefore have for the entire cross section

T = f p(tdA) = / p(E)deﬂ (5-4)
A A \C

Since Ty,,,/c is constant,

T = Tmax / p? dA (5-5)
A

C
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@ The integral in the equation can be represented as the polar moment of
Inertia J, of shaft’s x-sectional area computed about its longitudinal axis

T max = Max. shear stress in shaft, at the outer surface.

I = resultant internal torque acting at x-section, from method of sections &
equation of moment equilibrium applied about longitudinal axis.

J = polar moment of inertia at x-sectional area
C = outer radius of the shaft

1/23/2017
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Not only does the internal torque 7 develop a linear distribution
of shear stress along each radial line in the plane of the cross-
sectional area.

But also an associated shear-
stress distribution is developed
along an axial plane , Fig. 5-7 Db

Tmax

Shear stress varies linearly along
each radial line of the cross section.
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shafts made from wood
tend to sp/italong the
axial plane when
subjected to excessive
torque, Fig. 5-8 . This is
because wood is an
anisotropic material.
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Failure of a wooden shaft due to torsion.

Fig. 5-8
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¢ Tubular Shaft.

If a shaft has a tubular cross section, with inner radius C; and outer radius C,

then from Eqg. 5-8 we can determine its polar moment of inertia by subtracting
J for a shaft of radius €; from that determined for a shaft of radius Cy . The
result is

aa
2((,( C;)

(5-9)
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Shear stress varies linearly along
each radial line of the cross section.

(a) (b)
1/23 Fig. 5-9




The tubular drive shaft for this
truck was subjected to an
excessive torgue resulting in
failure caused by yielding of the
material.

Engineers deliberately design drive shafts
to fail before torsional damage can occur
to parts of the engine or transmission.
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s+ Absolute maximum torsional stress

@ Need to find location where ratio 7¢/J Is a maximum.
@ Draw a torque diagram (internal torque 7 vs. xalong shaft)

@ Sign Convention: 7 is positive, by right-hand rule, is directed
outward from the shaft

@ Once internal torque throughout shaft is determined, maximum
ratio of 7c¢ /Jcan be identified
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Procedure for analysis

« Internal loading

@ Section shaft perpendicular to its axis at point where shear
stress Is to be determined

® Use free-body diagram and equations of equilibrium to obtain
Internal torque at section.

« Section property

@ Compute polar moment of inertia and x-sectional area
® For solid section, J= nc4/2

® For tube, J=n(c,t— ¢?)/2
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< Shear stress

@ Specify radial distance p, measured from center of x-section
to point where shear stress is to be found

@ Apply torsion formula, 7= 7p/Jor ¢, = TclJ

@ Shear stress acts on x-section in direction that is always
perpendicular to p
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EX1:- The shaft shown in Fig. 5-11 a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at points A
and B, located at section a— g of the shaft, Fig. 5-11 c.

Emow

42.5 kip-in.

30 kip-in.
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SOLUTION

Internal Torque.

The internal torque at section a—a will be determined from the
free-body diagram of the left segment, Fig. 5-115. We have

SM,=0; 425kip-in. —30kip-in. — 7T =0 T = 12.5kip-in.

Section Property. The polar moment of inertia for the sha

J= ‘—;(0.75 in.)* = 0.497 in.%

|

Shear Stress. Since point Aisatp = ¢ = 0.75 in.,
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Tc  (12.5kip-in.) (0.75 in.
.= e (12.5kip ?(4 ) _ 189 ksi
J (0.497 in.*)
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Likewise for point B, at p = 0.15 in., we have

Tp  (12.5kip-in.)(0.15 in.)

92

)

fae
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o Tp = — = = 3.77 ksi
5 fU (0.497 in.*)

o

b

N

%)

— A
©

= o _,18.9 ksi
r=# Directions of the stresses on

=l clements A and B established

roi from direction of resultant — 12.5 kip-in.
‘=i internal torque T. \
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